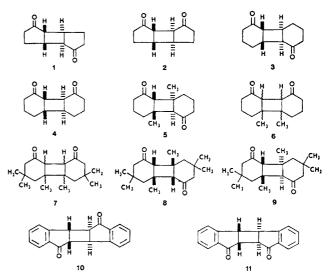
Determining Centrosymmetric Dimers by Infrared and Raman Spectroscopy

H. ZIFFER AND I. W. LEVIN

National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland 20014

Received May 9, 1969


Infrared and Raman spectra of cyclobutane photodimers of 2-cyclopentenone, 2-cyclohexenone, 3-methyl-2cyclohexenone, and isophorone were recorded. A comparison of the vibrational data for the head-to-head and head-to-tail *anti* species of each of the four sets of dimers has been used, in conjunction with the Mutual Exclusion Rule, to identify the centrosymmetric dimer.

Although the photodimerization of conjugated carbonyl derivatives to form cyclobutane dimers is a wellknown reaction,¹ the problems associated with determining the stereochemistry about the cyclobutane ring remain formidable. Since one of the more frequent reaction products has the head-to-tail (h-t) anti configuration, a simple method for distinguishing this dimer from the other possible products would prove useful in structural determinations. The cyclobutane ring of dimers with an h-t or h-h configuration exists in two conformations, planar or puckered, depending upon the nature of the substituents on the ring. Thus, since only the (h-t) anti dimer with a planar cyclobutane ring possesses an inversion center, techniques that specifically identify centrosymmetric species are particularly worth examining in these systems.

In addition to X-ray methods, which are sometimes unwieldy, vibrational spectroscopy offers a means of characterizing molecules with a center of symmetry. The difference in vibrational selection rules for infrared and Raman transitions of molecules with this symmetry element provides a theoretical basis for determining its presence or absence through the Rule of Mutual Exclusion;² that is, for centrosymmetric molecules, a vibrationally active infrared transition cannot be active in the Raman; and conversely, a vibrationally active Raman transition cannot be active in the infrared. In molecules lacking the inversion center, vibrations of the same frequency, which are termed coincidences, appear in both the infrared and Raman spectrum. To detect this symmetry element, Raman and infrared spectral comparisons are commonly employed in structural determinations of small molecules.³ Since even the simplest photodimers, however, have a relatively large number of atoms and, consequently, rich and complex vibrational spectra, it is necessary to assess the usefulness of the vibrational method for significantly large molecular species. Thus, for this study we examined the infrared and Raman spectra of several pairs of structurally known photodimers with progressive structural complexities. For comparison purposes one member of each pair possessed an (h-t) anti configuration and contained a possible center of symmetry (point group C_i). The other member of the set possessed no element of symmetry other than the identity element (point group C_1).

Results

The vibrational spectra of the photodimers of cyclopentenone (1 and 2),⁴ cyclohexenone (3 and 4),⁵ 3-methylcyclohexenone (5 and 6),⁶ isophorone (7, 8,and 9),⁷ and benzindenone (10 and 11) were recorded

with the samples in the form of KBr disks for the infrared and as pure solids for the Raman spectra. Although the accuracy of the Raman displacements and the infrared frequencies are each about ± 2 cm⁻¹, transitions within 5 cm⁻¹ for the infrared and Raman comparisons were considered coincidences. Crystal effects may arise in the Raman spectra of the pure solids; however, the $5-cm^{-1}$ interval accepted for coincidences between infrared absorptions and Raman emission lines should allow for crystal perturbations. Tables I-III summarize the infrared and Raman data for the first three pairs of compounds (only obvious shoulders are differentiated in the tables). Since the detector of the Raman spectrometer falls in sensitivity in the 3000-cm⁻¹ displacement region on the Stokes side of the exciting line, the carbon-hydrogen motions appear as weak structureless bands. Consequently, the Raman and infrared comparisons were started at 2000 cm⁻¹. No transitions occurred between 2000 cm^{-1} and the carbon-hydrogen stretching region at approximately 3000 cm^{-1} . Although we obtained Raman data within 75-100 cm^{-1} of the exciting line,

N. J. Turro, "Molecular Photochemistry," W. A. Benjamin, New York, N. Y., 1965, p 194.
R. P. Bauman, "Absorption Spectroscopy," John Wiley & Sons, Inc.,

⁽²⁾ R. F. Bauman, Absorption Spectroscopy, John Wiley & Sons, Inc., New York, N. Y., 1962, p 462.

⁽³⁾ D. F. Koster and F. A. Miller, Spectrochim. Acta, 24A, 1487 (1968).

⁽⁴⁾ P. E. Eaton, J. Amer. Chem. Soc., 84, 2344 (1962).

⁽⁵⁾ D. Valentine, N. J. Turro, Jr., and G. S. Hammond, *ibid.*, **86**, 5202 (1964).

⁽⁶⁾ H. Ziffer, unpublished results.

⁽⁷⁾ O. L. Chapman, P. J. Nelson, R. W. King, D. J. Trecker, and A. A. Griswold, *Rec. Chem. Progr.*, **28**, 167 (1967).

1.

TABLE II COMPARISON OF THE RAMAN DISPLACEMENTS AND

TABLE I

COMPARISON OF THE RAMAN DISPLACEMENTS AND INFRARED FREQUENCIES FOR THE CYCLOPENTENONE PHOTODIMERS

2.

1,			2,	
head-to-tail		Raman, Infrared,		
Raman, cm ⁻¹	Infrared, cm ⁻¹	cm ⁻¹	cm ⁻¹	
325	СШ	299		
			420	
413	470	429	432	
	476	445	444	
513		490	490	
	522	542	544	
552		$554 \ (sh)^a$	556	
	632	619	617	
639			64 3	
	673	667		
	763 (sh)ª	765	767	
	767 (sh)ª	791	790	
770	771	801		
795			814	
	831		867 (sh)ª	
	876		870	
886		886	887	
905		899		
	913	935 (sh)ª	938	
	952	947	948 (sh)ª	
966	002	967	968	
500	990	1019	1019	
1023	550	1013	1015	
1023	1033	1053	1033	
1066	1000	1002	1082	
		1100		
1100	1100	1122	1124	
	1139	1150	1152	
1151		1165	1164 (sh)ª	
	1162		1180	
1172	1175		1197	
	1217	1213	1217	
1261 (sh)ª		1227	1227	
1272			1240	
	1282	1262	1264 (sh) ^a	
1295		1274	1271	
	1309		1282	
	1321	1310	1312 (sh)a	
1330			1316	
1413	1415	1402	1404	
1454	1454	1455	1456	
1717		1723	1722	
1726 (sh) ^a	1724	1737 (sh)ª	1736	
. ,	1735	• •		

^a sh denotes shoulder.

we set the lower limit for comparison purposes at 250 cm^{-1} , the cutoff point of the infrared spectrometer. The final frequency measurements were obtained from slow scans of expanded traces.

Table IV summarizes the infrared and Raman spectra of three isophorone dimers. The complete structures of these dimers are unknown at present; however, 7 is known to be (h-h) while 8 and 9 are (h-t) dimers.

Discussion

As stated previously, the basis for using infrared and Raman spectra to distinguish between the presence or absence of an inversion center, or between C_i and C₁ symmetry in the photodimer examples, is the Mutual Exclusion Rule. An examination of the comparison for 1 and 2, listed in Table I, clearly indicates that the Raman active bands in 1 do not appear in the infrared spectrum and vice versa, thus establishing a

	3, to-tail	HE CYCLOHEXENONE PHOTODIME 4, head-to-head		
Raman,	Infrared,	Raman,	Infrared,	
cm^{-1}	cm ⁻¹	cm ⁻¹	cm ⁻¹	
328		300		
400		382	384	
400	424	401	403	
490		446	405	
438	439		440	
(20)	462	455	400	
473	100	487	490	
	480	534	582	
	489 (sh)ª	590		
	497		600	
539	542	666	669	
615		707	709	
	649	739		
724			762	
743	740	850 (sh)ª	852	
	761	860	864	
841		875	877	
0	856	892	894	
	863	002	957	
070	881	987	501	
878		901	997	
017	902	1000	1021	
917	918	1022		
	955	1031	1033	
966	963	1068	1065 (sh)ª	
	987		1072	
	1009	1091	1093 (sh)ª	
1017			1097	
	1022	1129		
1028		1142	1140	
	1033	1172	1172 (sh)ª	
	1062	1211		
	1077	1225	1228	
1085	1088		1235	
1000	1116	1262	1260	
	1130	1202	1200	
11/1	1150	1271	1271 1280 (sh) ^a	
1141	1100		1310	
	1180	1010	1910	
	1200	1316	1004	
1210			1324	
	1221		1335	
	1237		1338 (sh)ª	
	1260	1352	1350	
1267	1270		1377	
	1281	1423	1423 (sh)ª	
	1316		1428	
	1320	1451	1449	
1328			1453 (sh)ª	
	1336	1461	1463	
	1343		1694	
	1356		1698	
	1396	1701	1704	
1416	1990	1101	1104	
1416	1400			
	1422			
1439				
	1444			
	1461			
1467	1470			
1685				
1695 (sh)ª	1693			
····/	1698			
	1000			

^a sh denotes shoulder.

1702

C_i symmetry for 1. The situation with regard to 2 in the same table is quite different. In this case many of the Raman bands have an infrared counter-

TABLE III

Comparison of the Raman Displacements and Infrared Frequencies for the 3-Methylcyclohexenone Photodimers

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5,	б,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-head-to-tail			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UIII			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	402	10.1		367	
485 496 438 508 455 522 483 484 537 502 575 508 609 634 566 712 603 602 751 676 677 751 676 677 805 707 707 818 743 744 853 765 833 872 833 874 873 (sh) ^a 893 877 847 873 (sh) ^a 903 899 901 904 940 943 929 932 982 954 955 1009 1031 1033 1041 974 978 1049 1045 1005 1058 1018 1005 1059 1031 1033 1154 1058 1062 1206 1210 (sh) ^a 187 1235 1205 1208 1241 (sh) ^a 1319 <td></td> <td>431</td> <td></td> <td></td>		431			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				407	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	485		425		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				438	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			455		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		522	483	484	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	537		502		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	575			508	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	609		545		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		634		566	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	712		603	602	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		717	627		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751		676	677	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		805		707	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	818			744	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		853			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	872		100	833	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		877	847	000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	893	011		873 (sh)ª	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	898 (sh)4	011		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• •	800	• •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	915	000	000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		943	020		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	510	-	929		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	082	200	054		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			904		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			074		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1011	1049	914		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1059	1040	1010	1005	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1022	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000	1144			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1154	1144		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1104	1100			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1100	1103			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1109	1100			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1167		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1210 (sh)ª			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1235			1208	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1241 (sh)ª	1223		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1283				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1297	1281		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1317			1289 (sh)ª	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1307		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1331 (sh)ª	1319	1321	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1341		1338	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1353		1356	1354	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1362		1378	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1376		1382	
1438 1456 1453 1448 1460 1454 1458 1466 1471 1468 1690 1681 1679 1698 (sh)* 1683 ~1703	1401	1402	1420	1419 (sh)ª	
1448 1460 1454 1458 1466 1468 1471 1468 1690 1686 1681 1679 1698 (sh)* 1693 1683 ~1703 ~1703 1698	1434			1421 (sh)ª	
1454 1458 1466 1468 1471 1468 1690 1686 1681 1679 1698 (sh)* 1683 ~1703		1438	1456		
1471 1468 1690 1686 1681 1679 1698 (sh)* 1683 ~1703		1448		1460	
1471 1468 1690 1686 1681 1679 1698 (sh)* 1683 ~1703	1454	1458	1466	1468	
1681 1679 1698 (sh)* 1683 -1703		1468			
1683 -1703		1679			

TABLE IV COMPARISON OF THE RAMAN DISPLACEMENTS AND INFRARED FREQUENCIES FOR THE ISOPHORONE PHOTODIMERS

FR	EQUENCIES	FOR THE I		PHOTODIM	IERS	
7,		8, ——head-to-tail——		9, ——head-to-tail——		
Raman.	to-head Infrared,	Raman,	Infrared.	Raman,	Infrared,	
cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹	
253		278			285	
307	334	282	286	318		
342	344 (sh) ⁴	291	293		333	
385	383	302		370	373	
401 416		313	316 338	394	418	
447		360	008	423	410	
	473	370			449	
486		409			483	
510	513	424		492		
554	000	479 489 (-1-)	480	527	F 40	
627	620 628 (sh) ⁴	488 (sh) 519	489 521		542 579	
751	026 (81)	556	559	608	010	
	788		573	619		
812		605	607		656	
828	825	626	629	688		
844		672		708		
880	879 804	706	750	790	756	
892 900	894	792 (sh)	756 793	789 818	814	
800	914	792 (81) 799	100	010	827	
921		818	818	869	- •	
936	937	857		900	900	
945 (sh) ^a	943 (sh) ^a		892	907		
980	979	900			920	
1023	1023	906	905 (sh) ^a	928	045	
1063 1086 (sh) ^a	1063 1086	923	929 (sh) ^a	942	945 969	
1080 (81)	1090 (sh) ^a		931 (sh) ^a		989	
1102 (sh)a	1101	947	,	998		
1108 (sh) ^a	1108		957		1025	
1130	1128	974	977	1030		
1170	1167		982	1055	1001	
	1192 1222	998	991	1092	1081	
1228	1222 1229 (sh) ^a	1010		1092	1107	
1220	1250	1010	1017	1117		
1255		1038			1128	
	1259		1046	1138		
	1278	1086			1163	
1010	1298	1100	1092	1169	1170	
1313	1910	1120	1197		1179 1189	
	1319 1353		1127 1146	1228	1225	
	1366	1170	22.10		1239	
	1376		1177	1262	1262	
	1388	1186		1280		
1417	1417		1192		1288	
	1420 (sh) ^a	1041	1216	1204	1315	
1455 1466	1458 1470	1241	1233	1326	1337	
1685	1687		1233		1346	
	1696		1252		1373	
	1706	1261			1386	
			1265		1392	
			1286	1415	1404	
		1312	1300	1454	1424 1457 (sh) ^a	
		1014	1319	1404 1472 (sh) ^a	1457 (sn)~ 1468	
			1345	(547)	1477	
			1353	1595		
			1376	1681		
			1387		1688	
		1410	1397		1698 (sh) ^a 1714 (sh) ^a	
		1410	1420		r(14 (80)*	
		1415				
			1461			
		1468 (sh) ^a	1465 (sh) ^a			
			1473			
		1682	1482			
			1687			
			1694			
• . h. J						

• sh denotes shoulder.

part indicating that the Rule of Mutual Exclusion does not apply. The presence of only six coincidences for 1 compared with twenty-six for 2 (see Table V)

^a sh denotes shoulder.

			TUD	100 1			
		COMPAR	ISON OF	THE RAMA	AN AND		
	I	NFRARED	Freque	NCY COINC	DENCE	8ª	
		Head-to-ta	il			ead-to-he	
		-photodime	r		photodimer		
Compd	R	ir	Ca	Compd	R	ir	С
1	24	24	6	2	31	36	26
3	24	46	10	4	33	42	24
5	34	34	7	б	41	46	28
10	26	42	10	11	24	43	16
		Compd	R	ir	С		
		7	37	42	23		
		8	41	48	16		
		9	33	41	9		

TABLE V

^a R, ir, and C denote Raman lines, infrared peaks, and coincidences, respectively.

is quite remarkable. Since each dimer contains twenty-four atoms, or a total of sixty-six vibrational fundamentals, and since overtone and combination bands commonly appear in the infrared spectrum, the strong possibility exists for accidental coincidences to occur between the infrared and Raman spectra. Other factors that may distort the frequency positions and hinder a valid spectral comparison are Fermi resonance and crystal field effects, although the latter, particularly, are probably small. Therefore, in examining the infrared and Raman frequency comparisons for these dimers, it is important to establish a trend rather than to require a strict mutual exclusion for the C; molecules or a complete set of coincidences for C_1 molecules. Since nonplanar cyclobutane derivatives do not contain a center of symmetry, the conclusion that 1 contains a center of symmetry agrees with the X-ray determination, by Margulis,⁸ which demonstrated the planarity of the cyclobutane ring for this species.

Table II lists the results for the 2-cyclohexenone dimers (3 and 4). Although the structure proofs for these dimers have not been published, Hammond, et al.,⁵ report that the dimers were assigned as 3 and 4 by Eaton. The comparison for 3 (Table II) shows that there are ten coincidences (Table V) while twenty-four coincidences occur for 4. The number of coincidences for 4 clearly suggests C_1 symmetry; however, the trend establishing a center of symmetry for 3 is less persuasive, although still indicative of C_i symmetry, than it was for 1. In order to determine the complicating effects of increasing the size of the dimer with additional molecular groups, we examined the two photodimers of 3-methyl-2-cyclohexenone (Table III). Seven coincidences appear in the spectra of 5, while twentyeight coincidences occur in 6. Again, differentiation between C_i and C_1 symmetry appears clear for these two dimers.

As the molecule increases in size through addition of various units, specific vibrational frequencies of the molecule can shift through coupling effects between the large number of vibrations of the same symmetry. These effects, in addition to the occurrence of accidental degeneracies, complicate the isophorone dimer spectra. The summary in Table V shows that 7 has twenty-three coincidences and therefore does not contain a center of symmetry. If we assume⁹ that the two (h-t) alkali stable dimers are 8 and 9, then, on the basis of the earlier arguments, it appears that the dimer with only nine coincidences has the center of symmetry and is therefore 9. Unfortunately, the other compound, assigned as 8, with sixteen coincidences is a borderline case for establishing either C_i or C_1 symmetry in the absence of 7 and 9. The interpretation of the vibrational comparison for 8 or 9 must await the complete structure determination of these compounds.

Since the trends indicating the presence or absence of a center of symmetry were particularly clear with regard to 1 and 2, we were interested in determining the effect upon the spectral comparisons of fusing an aromatic ring to this system. Compounds 10 and 11 were prepared by established synthesis^{10,11} and the results, summarized in Table V, show that 10, with a potential center of symmetry, has ten coincidences; 11, which lacks a center, has sixteen. The greater number of coincidences in 10, compared with 1, for example, is understandable in that the opportunity for accidental coincidences becomes greater as the molecular size increases. An alternate possibility arises in that several conformers may coexist. Thus, the situation could be complicated by having a small percentage of the molecules in the puckered state. Greenberg and Post¹² summarize X-ray data for several cyclobutane derivatives that possess either a planar or puckered cyclobutane ring depending upon the nature of the substituent about the ring. The reason for 11 showing fewer coincidences as compared with 2 is probably related to these larger dimers usually exhibiting fewer Raman bands than expected. This phenomenon may result from the nature of the experiment. For example, since fluorescence, intrinsic or resulting from minute impurities, masks the weaker Raman signals, a decrease in the total number of observed Raman lines with compounds more difficult to purify is not surprising. In any event, the results for compounds 8 through 11 suggest that these dimers can not be unambiguously analyzed by this technique.

We conclude that, in cases where dimers can be compared, the compound possessing the center of symmetry can be confidently assigned. The method is rapid, nondestructive, and, in conjunction with laser Raman spectroscopy, requires only milligram samples of material. In addition, if other physical measurements, for example, dipole moment or nmr methods, indicate that dimerization occurs in an h-t fashion, then the converse information from the vibrational comparisons that the molecule does not contain a center of symmetry also becomes valuable in completing the structural analysis.

Experimental Section

Infrared spectra were recorded with a Perkin-Elmer Model 521 spectrophotometer at spectral slit widths of about 0.9 cm⁻¹. Samples were viewed in KBr disks, approximately 0.5 mm thick, in concentration ratios of about 1:300 for sample to KBr. Water

⁽⁸⁾ T. N. Margulis, Acta Crystallogr., 18, 742 (1965).

⁽⁹⁾ The assumption is somewhat arbitrary since Corey, et al., have shown that trans six-four ring junctions adjacent to a carbonyl function are less

stable than *cis* six-four junctions; however, the effect of steric repulsion between *cis* 1,3 methyl groups on the stability of the ring junction is unknown.

⁽¹⁰⁾ E. H. White and H. C. Dunathan, J. Amer. Chem. Soc., 78, 6055 (1956).

⁽¹¹⁾ J. Bowyer and Q. N. Porter, Aust. J. Chem., 19, 1455 (1966).

⁽¹²⁾ B. Greenberg and B. Post, Acta Crystallogr., B24, 918 (1968).

vapor, ammonia, and carbon dioxide served as calibrating gases for the spectrometer.

Raman spectra of the solid samples (several milligrams) were obtained with a Cary Model 81 spectrophotometer equipped with a helium-neon CW laser source. Scattering from samples placed in a conical holder was viewed coaxially along the laser beam by the monochromator. Spectral slit widths varied from 2.5 to 3 cm⁻¹. Spectra were calibrated with atomic neon lines and are probably accurate to ± 2 cm⁻¹.

A crucial point in obtaining quality Raman spectra is to eliminate all traces of fluorescing material from the samples. For the systems examined in this study, sublimation of the samples under vacuum appears to be most effective. Under some circumstances, repeated sublimation is necessary.

The dimers were prepared by previously published procedures as indicated in Table VI.

Registry No.-1, 2065-43-2; 2, 21876-87-9; 3, 712-27-6; 4, 21876-89-1; 5, 21876-90-4; 6, 21927-71-9: 7, 21899-39-8; 8 and 9, 21865-12-3; 10, 21899-40-1: 11, 17062-18-9.

	Тав	le VI	
Dimer	Mp, °C	Lit. mp, °C	Lit. reference
1	126 - 126.5	125 - 126.5	4
2	69-70	66-67	4
3	51 - 52	53 - 55	5
4	77-78	79-80	5
5	146-147	146 - 147	6
6	68-69	68-69	6
7	118.5 - 190	188.5 - 190	7
9 ª	112 - 113.5	112 - 113.5	7
8 ª	211 - 213	211 - 213	7
10	286 - 288	293	9
11	229 - 235	225 - 266	10
and and a second se			

^a The structural assignments of 8 and 9 are tentative.

Acknowledgments.--We wish to thank Miss Glenna Christie for her assistance in obtaining the Raman spectra. Also, we wish to thank Dr. O. Chapman for kindly supplying samples of isophorone dimers.

Studies in Alkylation. II. Reactions of Epoxyalkyl Bromides¹

PHILIP A. CRUICKSHANK AND MORRIS FISHMAN

Central Research Department, Chemical Research and Development Center, FMC Corporation, Princeton, New Jersey 08540

Received May 20, 1969

Alkylation reactions of the bifunctional ω -bromo-1,2-epoxyalkanes have been found to be markedly dependent upon the solvent and the nature of the nucleophile. In alcoholic media, compounds which generate an anion with a localized electron pair react by opening the oxirane ring to give β -hydroxy- ω -bromoalkyl derivatives. In aprotic solvents, these same compounds react by displacement of bromide ion to give epoxyalkyl derivatives. Compounds which generate anions with a delocalized electron pair react exclusively by displacement of bromide ion. Subsequent cyclization reactions may occur in alcohol if the initial product can be converted into an anion and if the proper spatial relationship exists between the epoxy group and the nucleophilic carbon.

As part of a program to prepare compounds for tained. Elemental and spectrometric analyses idenscreening as antimalarial agents,² a series of amino tified the products as the epoxyalkyl derivatives 5 and 6 alcohols of general structure 4 was required. Our approach to the synthesis of these compounds involved condensation of appropriate nucleophiles with the ho-X⁻ mologous ω -bromo-1,2-epoxyalkanes 1, followed by

$$\begin{array}{c} + 1 & \xrightarrow{\text{DMF or}} X - (CH_2)_n - CH - CH_2 \\ \text{DMSO} & 0 \\ \text{5a}, n = 2 \\ \text{b}, n = 4 \\ \text{6}, n = 2; X = C_6H_5O_7, \end{array}$$

Ņ

(Table IV). The infrared spectra were free of hydroxyl absorption. The nmr spectra established that the oxirane ring has been retained; chemical shifts and coupling constants (Table V) were in close agreement with published values for mono substituted epoxides.³ Prominent molecular ions were observed in the mass spectra as well as daughter ions corresponding to known fragmentation mechanisms for structures of this type (Table VI).4

Diethyl sodiomalonate (7, R = H) and diethyl sodiomethylmalonate (7, $R = CH_3$) also were found to react with the epoxyalkyl bromides in dimethylformamide to give the corresponding epoxyalkylmalonates 8 (Table IV), as evidenced by the nmr chemical

aminolysis of the bromo alcohol 2 (Scheme I). During the course of this work novel solvent and nucleophile dependent reactions of the epoxyalkyl bromides 1 were

Results The anions of 4(3H)-quinazolone and of phenol were

found to react with an excess of 4-bromo-1,2-epoxy-

butane (1a) in alcohol to give the expected products,

the 4-bromo-2-hydroxybutyl derivatives 2a and 3 (Ta-

ble I). A similar reaction with 6-bromo-1,2-epoxyhexane (1c) and 4(3H)-quinazolone gave the homologous

product 3-(6-bromo-2-hydroxyhexyl)-4-quinazolone

(2b). These compounds were characterized by in-

frared spectrometry (hydroxyl absorption at $3350 \,\mathrm{cm}^{-1}$),

nmr chemical shifts and coupling constants (Table II),

the ω -bromo-1,2-epoxyalkanes in dimethylformamide

or dimethyl sulfoxide, bromine free products were ob-

When the same anions were allowed to react with

and mass spectrometry (Table III).

encountered.

(2) M. Fishman and P. A. Cruickshank, J. Heterocycl. Chem., 5, 467(1968).

⁽¹⁾ This paper was presented before the Division of Organic Chemistry, 156th National Meeting of the American Chemical Society, Atlantic City, N. J., September 1968, Abstract ORGN 71.

⁽³⁾ E. Lippert and H. Prigge, Ber. Bunsenges. Phys. Chem., 67, 415 (1963).

⁽⁴⁾ H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Mass Spec-trometry of Organic Compounds," Holden-Day, Inc., San Francisco, Calif., 1967, pp 450-458.